Object Boundary Detection Using Active Contour Model via Multiswarm PSO with Fuzzy-Rule Based Adaptation of Inertia Factor

Author:

Khunteta Ajay1ORCID,Ghosh D.1ORCID

Affiliation:

1. Department of Electronics & Communication Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India

Abstract

Active contour models, colloquially known as snakes, are quite popular for several applications such as object boundary detection, image segmentation, object tracking, and classification via energy minimization. While energy minimization may be accomplished using traditional optimization methods, approaches based on nature-inspired evolutionary algorithms have been developed in recent years. One such evolutionary algorithm that has been used extensively in active contours is the particle swarm optimization (PSO). However, conventional PSO converges slowly and gets trapped in local minimum easily which results in inaccurate detection of concavities in the object boundary. This is taken care of by using proposed multiswarm PSO in which a swarm is set for every control point in the snake and then all the swarms search for their best points simultaneously through information sharing among them. The performance of the multiswarm PSO-based search process is further enhanced by using dynamic adaptation of the inertia factor. In this paper, we propose using a set of fuzzy rules to adjust the inertia weight on the basis of the current normalized snake energy and the current value of inertia. Experimental results demonstrate the effectiveness of the proposed method compared to conventional approaches.

Publisher

Hindawi Limited

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3