A Stock Closing Price Prediction Model Based on CNN-BiSLSTM

Author:

Wang Haiyao1,Wang Jianxuan2,Cao Lihui3,Li Yifan2,Sun Qiuhong2,Wang Jingyang2ORCID

Affiliation:

1. School of Ocean Mechatronics, Xiamen Ocean Vocational College, Xiamen 361100, China

2. School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

3. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, China

Abstract

As the stock market is an important part of the national economy, more and more investors have begun to pay attention to the methods to improve the return on investment and effectively avoid certain risks. Many factors affect the trend of the stock market, and the relevant information has the nature of time series. This paper proposes a composite model CNN-BiSLSTM to predict the closing price of the stock. Bidirectional special long short-term memory (BiSLSTM) improved on bidirectional long short-term memory (BiLSTM) adds 1 − tanh(x) function in the output gate which makes the model better predict the stock price. The model extracts advanced features that influence stock price through convolutional neural network (CNN), and predicts the stock closing price through BiSLSTM after the data processed by CNN. To verify the effectiveness of the model, the historical data of the Shenzhen Component Index from July 1, 1991, to October 30, 2020, are used to train and test the CNN-BiSLSTM. CNN-BiSLSTM is compared with multilayer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM), BiLSTM, CNN-LSTM, and CNN-BiLSTM. The experimental results show that the mean absolute error (MAE), root-mean-squared error (RMSE), and R-square (R2) evaluation indicators of the CNN-BiSLSTM are all optimal. Therefore, CNN-BiSLSTM can accurately predict the closing price of the Shenzhen Component Index of the next trading day, which can be used as a reference for the majority of investors to effectively avoid certain risks.

Funder

Scientific Research Project Foundation for High-level Talents of Xiamen Ocean Vocational College

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3