Fuel-Optimal Ascent Trajectory Problem for Launch Vehicle via Theory of Functional Connections

Author:

Li Shiyao1ORCID,Yan Yushen1ORCID,Zhang Kun2ORCID,Li Xinguo13ORCID

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Xi’an Modern Control Technology Research Institute, Xi’an 710065, China

3. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

In this study, we develop a method based on the Theory of Functional Connections (TFC) to solve the fuel-optimal problem in the ascending phase of the launch vehicle. The problem is first transformed into a nonlinear two-point boundary value problem (TPBVP) using the indirect method. Then, using the function interpolation technique called the TFC, the problem’s constraints are analytically embedded into a functional, and the TPBVP is transformed into an unconstrained optimization problem that includes orthogonal polynomials with unknown coefficients. This process effectively reduces the search space of the solution because the original constrained problem transformed into an unconstrained problem, and thus, the unknown coefficients of the unconstrained expression can be solved using simple numerical methods. Finally, the proposed algorithm is validated by comparing to a general nonlinear optimal control software GPOPS-II and the traditional indirect numerical method. The results demonstrated that the proposed algorithm is robust to poor initial values, and solutions can be solved in less than 300 ms within the MATLAB implementation. Consequently, the proposed method has the potential to generate optimal trajectories on-board in real time.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3