Hot Structure Flight Data of a Faceted Atmospheric Reentry Thermal Protection System

Author:

Boehrk Hannah1ORCID,Weihs Hendrik1,Elsäßer Henning1

Affiliation:

1. Institute of Structures and Design, German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt (DLR)), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

Abstract

The second sharp-edged flight experiment is a faceted suborbital reentry body that enables low-cost in-flight reentry research. Its faceted thermal protection system consisting of only flat radiation-cooled thermal protection panels is cost-efficient since it saves dies, manpower, and storage. The ceramic sharp leading edge has a 1 mm nose radius in order to achieve good aerodynamic behaviour of the vehicle. The maximum temperature measured during flight was 867°C just before transmission ended and was predicted with an accuracy of the order of 10%. The acreage thermal protection system is set up by 3 mm fiber-reinforced ceramic panels isolated by a 27 mm alumina felt from the substructure. The panel gaps are sealed by a ceramic seal. Part of the thermal protection system is an additional transpiration-cooling experiment in which nitrogen is exhausted through a permeable ceramic matrix composite to form a coolant film on the panel. The efficiencies at the maximum heat flux are 58% on the porous sample and 42% and 30% downstream of the sample in the wake. The transient load at each panel location is derived from the trajectory by oblique shock equations and subsequent use of a heat balance for both cooled and uncooled structures. The comparison to the heat balance HEATS reveals heat sinks in the attachment system while the concurrence with the measurement is good with only 8% deviation for the acreage thermal protection system. Aerodynamic control surfaces, i.e., canards, have been designed and made from a hybrid titanium and ceramic matrix composite structure.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3