Affiliation:
1. Yunnan Key Laboratory of Opto-electronic Information Technology, Yunnan Normal University, Kunming, China
2. Department of Urology Surgery, Yunnan First People’s Hospital, Kunming, China
Abstract
Realistic tool-tissue interactive modeling has been recognized as an essential requirement in the training of virtual surgery. A virtual basic surgical training framework integrated with real-time force rendering has been recognized as one of the most immersive implementations in medical education. Yet, compared to the original intraoperative data, there has always been an argument that these data are represented by lower fidelity in virtual surgical training. In this paper, a dynamic biomechanics experimental framework is designed to achieve a highly immersive haptic sensation during the biopsy therapy with human respiratory motion; it is the first time to introduce the idea of periodic extension idea into the dynamic percutaneous force modeling. Clinical evaluation is conducted and performed in the Yunnan First People’s Hospital, which not only demonstrated a higher fitting degree (AVG: 99.36%) with the intraoperation data than previous algorithms (AVG: 87.83%, 72.07%, and 66.70%) but also shows a universal fitting range with multilayer tissue. 27 urologists comprising 18 novices and 9 professors were invited to the VR-based training evaluation based on the proposed haptic rendering solution. Subjective and objective results demonstrated higher performance than the existing benchmark training simulator. Combining these in a systematic approach, tuned with specific fidelity requirements, haptically enabled medical simulation systems would be able to provide a more immersive and effective training environment.
Funder
National Natural Science Foundation of China
Subject
Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献