An Occupancy-Based Adaptive Signal Control for a Congested Signalized Intersection in the Low CV Penetration Environment

Author:

Zhang Yi12ORCID,Zhang Jianhua13ORCID,Tan Baihong1ORCID,He Shuxian1ORCID,Peng Liqun2ORCID,Qiu Tony Z.12ORCID

Affiliation:

1. Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan, Hubei, China

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada

3. Wuhan Public Security Bureau Traffic Management Bureau Science and Technology Management Department, Wuhan, Hubei, China

Abstract

Adaptive signal control (ASC) is a well-researched topic that offers an efficient way for traffic management. It possesses a powerful ability to accommodate complex and constantly changing urban transportation networks. With the development of vehicular communication, CV-based ASC shows remarkable advantages compared with the traditional ASC system. Though the existing CV-based ASC strategies were proposed in the past few years, however, there are still issues to overcome. Most of the studies on CV-based ASC are based on the assumption of high CV penetration rate, which often result in poor performance when applied to low CV penetration environments. Besides, the lack of consideration for mixed traffic flow, which is in terms of both the vehicle types and CV penetration of different types of vehicles. To solve these issues, this paper developed an Occupancy-Based ASC strategy for a congested signalized intersection to optimize signal timing and reduce total passenger delay in the low CV penetration environment. Focused on the issues existing in the low CV penetration environment, a Maximum Likelihood Estimation (MLE) model was proposed to estimate vehicle arrivals, and two traffic models, MicroDM and MacroDM, were developed to model the mixed traffic flow and estimate passenger delay. With the purpose of offering fair treatment to passengers approaching the intersection, we proposed an Occupancy-Based Adaptive Signal Control strategy. By transforming the complex signal control problem into a mixed-integer linear programming problem, we found the optimal solution for minimizing total passenger delay. We then evaluated the proposed Occupancy-Based ASC strategy using simulation case studies. The results show that changing traffic status could be captured and estimated with the real-time CV trajectory data as input. Applying the Occupancy-Based ASC control strategy, phases with HOVs or more vehicles will be allocated more travel time. In particular, optimization results show that the proposed Occupancy-Based ASC strategy effectively balances passenger travel demands during peak volume periods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3