A Stock Selection Model of Image Classification Method Based on Convolutional Neural Network

Author:

Li Pengfei1ORCID,Xu Jungang1ORCID,Li Keyao1

Affiliation:

1. University of Chinese Academy of Sciences, Beijing, China

Abstract

With the development of artificial intelligence technology, an increasing number of researchers try to apply different machine learning and deep learning methods to quantitative trading fields to obtain more stable and efficient trading models. As a typical quantitative trading strategy, stock selection has also attracted a lot of attention. There are many studies and applications on stock selection. However, the existing research and application cannot meet the continuous expansion of the scale and dimension of stock selection data set and cannot meet the needs in terms of efficiency and accuracy of stock selection. A convolutional neural network has been applied to image classification and achieved better results than the traditional methods. In this study, we first constructed a multifactor stock selection data set based on China’s stock market. Then, we apply the convolutional neural network model to analyze stock selection data and select stocks. The main contribution of this study is that we build a stock multifactor data set, construct a “factor picture,” and classify them by convolutional neural network to select stocks. This study also makes comparative experiments on the decision tree, support vector machine, and feedforward neural network in stock selection on the same data set constructed in this study. The results show that the stock selection method based on the convolutional neural network outperforms other methods in terms of the annual return, sharp ratio, and max drawdown.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3