An Artificial Neural Network-Based Comprehensive Solar Photovoltaic Emulator

Author:

Saraswathi Kalaimohan Thankanadar1ORCID,Arumugam Parassuram2ORCID,V. Swaminathan Gurunandh1ORCID,Periasamy Somasundaram1ORCID

Affiliation:

1. Dept. of Electrical and Electronics Engineering, CEG, Anna University, Chennai, India

2. Dept. of Electrical and Electronics Engineering, Meenakshi Sundararajan Engineering College, Chennai, India

Abstract

With increasing solar photovoltaic-based power generation, a photovoltaic emulator (PVE) is necessary to experimentally validate new control strategies without the influence of external factors such as irradiance and temperature. However, two significant challenges with PVEs are (i) solving the nonlinear equation of photovoltaic (PV) panel and (ii) oscillations in constant current (voltage) region with voltage (current) control. Thus, in this paper, a PVE with the ability to mimic both uniformly irradiated and partially shaded PV panels is proposed by employing artificial neural network (ANN) and piecewise-linearization technique. Based on the input operating conditions (irradiance, temperature, and partial shading), the ANN breaks the nonlinear I-V curve into piecewise-linear segments and outputs their boundary points. Then, with these boundary points, piecewise-linear equations of the segments relating PVE’s voltage and current are formed. Subsequently, using these piecewise-linear equations, the reference PVE voltage corresponding to PVE’s output current is calculated and given to the PI controller of a synchronous buck converter to mimic a PV panel. Thus, the proposed PVE overcomes the problem of solving nonlinear I-V equation by piecewise linearization which in turn aids an impedance-matching technique to mitigate the aforementioned oscillations. The generation of training data and development of ANN were carried out in MATLAB. Finally, the simulation studies performed in MATLAB/Simulink and hardware experiments validated the steady-state accuracy and the transient response which settled within 10 ms endorsing the real-time application of the proposed PVE.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3