Fault Tolerant Control in Redundant Inertial Navigation System

Author:

Dai Xiaoqiang1ORCID,Zhao Lin1,Shi Zhen1

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin 150001, China

Abstract

Conventional fault detection and isolation technology cannot fully ensure system redundancy features when sensors experience drift in a redundant inertial navigation system. A new fault tolerant control method employs state estimation and state feedback techniques to compensate the sensor drift. However, the method is sensitive to measurement noise characteristics, and the performance of the method nearly depends on the feedback gain. This paper proposes an improved fault tolerant control algorithm, which employs an adaptive extended Kalman particle filter (AEKPF) to deal with unknown noise characteristics and model inaccuracies. In addition, a drift factor is introduced in the improved fault tolerant controlin order to reduce the dependence of compensation system on the feedback gain. Simulation results show that the improved fault tolerant control algorithm can effectively correct the faulty sensor even when the multiple erroneous sensors are producing faulty outputs simultaneously. Meanwhile, the AEKPF is able to solve the problem of unknown non-Gaussian noise characteristics. Moreover, the feedback gain is significantly improved by the drift factor.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Fault Detection and Isolation Method for Airborne Inertial Navigation System/Attitude and Heading Reference System Redundant System;Aerospace;2023-12-11

2. Application of Neural Networks for Processing Information in Redundant Rate Gyroscopes;2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT);2023-09-26

3. Fault-tolerant Inertial Measuring Instrument with Neural Network;2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO);2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3