Mining Travel Time of Airport Ferry Network Based on Historical Trajectory Data

Author:

Ding Cong1ORCID,Bi Jun2ORCID,Xie Dongfan12,Zhao Xiaomei12,Liu Yi1

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

2. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing, China

Abstract

An airport ferry vehicle is a ground service vehicle used to transfer passengers between the far apron and the terminal. The travel time of ferry tasks in the airport ferry network is an important decision-making basis for ferry vehicle scheduling. This paper presents a graph-based method to mine the travel time between nodes in the airport ferry network. Firstly, combined with map and trajectory information, the method takes the terminal boarding gates, parking lots, and remote stands as road network nodes to build a complete airport ferry road network. Then, this paper uses big data processing technology to identify the travel time between regional connection nodes by data fusion through the temporal and spatial relationship between flight schedule and ferry vehicle GPS travel trajectory. Finally, the Floyd shortest path algorithm in graph theory is used to obtain the shortest path and travel time of all OD points. The experimental results show that all the ferry times calculated by the method proposed in this paper can better reflect the actual driving situation. This method saves the manpower, material resources, and time cost of on-site investigation and lays a foundation for the scheduling of ferry vehicles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3