A Leader-Follower Formation Control of Multi-UAVs via an Adaptive Hybrid Controller

Author:

Ali Zain Anwar1ORCID,Israr Amber1ORCID,Alkhammash Eman H.2ORCID,Hadjouni Myriam3ORCID

Affiliation:

1. Electronic Engineering Department, Sir Syed University of Engineering & Technology, Karachi 75300, Pakistan

2. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Abstract

The purpose of this study is to offer an adaptive hybrid controller for the formation control of multiple unmanned aerial vehicles (UAVs) leader-follower configurations with communication delay. Although numerous studies about the control of the formation exist, very few incorporate the delay in their model and are adaptive as well. The motivation behind this article is to bridge that gap. The strategy consists of an adaptive fuzzy logic controller and a Proportional, Integral, and Derivative (PID) controller where the logic controller fines/tunes the PID controller gains. The controller also consists of an integrator that raises the order of the system which helps reduce the noise and steady-state errors. The simulations confirm that the proposed technique is robust and satisfies mission requirements. Moreover, the flying formations of the swarm were created by a B-spline curve based on a simple waypoint. The main contribution of this study is to present a model where the formation remains stable during the whole flight, errors are within the optimal range, and the time delays are manageable.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3