Electrochemical Anodic Synthesis and Analysis of TiO2 Nanotubes for Biomedical Applications

Author:

Sivaprakash V.1ORCID,Natrayan L.2ORCID,Suryanarayanan R.1ORCID,Narayanan R.1ORCID,Paramasivam Prabhu3ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Chennai, 600127 Tamil Nadu, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105 Tamil Nadu, India

3. Department of Mechanical Engineering, College of Engineering and Technology, Mettu University, -318, Ethiopia

Abstract

Nowadays, titanium and alloy materials are encouraged for biomedical applications. Fabrication of the passive layer over the titanium materials is limited. Typically, a plain titanium sample is not suitable for bioimplant applications because the adhesion of biological elements like blood cells, tissues, and bones is poor. The use of surface-modified titanium resolves this issue. Surface modifications on titanium by electrochemical methods are simple and cost-effective. The addition of water to the ethylene-based electrolyte-enhanced the oxidation process to increase the length of the nanotubes. Surface morphological analysis shows that the length of the nanotubes has been increased, nanoindentation analysis delivers that increasing the length has been increased the hardness level, and corrosion analysis indicates that the length of nanotubes encouraged the corrosion resistance. Potentiodynamic polarization, Bode and Nyquist plots were models fit analyzed with equivalent electrical circuits. Sample cell viability was characterized with NIH-3T3 cells using an inverted microscopy analyzer.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3