Test-Retest Reliability of Low-Cost Posturography for Assessing Postural Stability Control Performance during Standing

Author:

Heamawatanachai Sumet1ORCID,Wiriyasakunphan Witawit2ORCID,Srisupornkornkool Kanokwan2ORCID,Jorrakate Chaiyong2ORCID

Affiliation:

1. Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand

2. Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand

Abstract

Postural stability control performance assessment is necessary in providing important information for individuals who are at risk of falling or who have balance impairment. Instrumented assessment is suggested as a valid and reliable test, but the cost and the difficulty of setup are significant limitations. The aim of this cross-sectional (test-retest reliability) study was to develop and determine the reliability of a low-cost posturography for assessing postural stability control performance during standing. The low-cost posturography was developed with four load cells and an acrylic platform. The center of pressure (COP) displacement and velocity were analyzed using written software. Test-retest reliability was performed with six different standing postural stability tests in twenty healthy volunteers on two different days. Intraclass correlation coefficient (ICC), standard error of measurement (SEM), coefficient of variation (CV), and Bland–Altman plot and limits of agreements (LOA) were used for analyses. The low-cost posturography was accurate (ICC = 0.99, p < 0.001 ; SEM = 0.003 cm) when compared to the true with calculated X and Y coordinates, with a moderate to excellent test-retest reliability for both COP displacement (ICCs ranged 0.62–0.91, p < 0.05 ; SEMs ranged 17.92–25.77%) and COP velocity (ICCs ranged 0.62–0.91, p < 0.05 ; SEMs ranged 18.09–27.69%) in all standing postural stability tests. Bland–Altman plots and LOAs suggested good agreement of tested parameters from the developed low-cost posturography between different days. In conclusion, the developed low-cost posturography had adequate reliability for assessing COP displacement and velocity during standing postural control stability performance tests.

Funder

National Science, Research and Innovation Fund

Publisher

Hindawi Limited

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3