Red Light Mitigates the Deteriorating Placental Extracellular Matrix in Late Onset of Preeclampsia and Improves the Trophoblast Behavior

Author:

Griffin Jakara1,Krolikowski John G.1,Kounga Kenisha1,Struve Janine2,Keszler Agnes3,Lindemer Brian3,Bordas Michelle1,Broeckel Grant3,Lohr Nicole L.3,Weihrauch Dorothee13ORCID

Affiliation:

1. Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

2. Department of Orthopedic Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

3. Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

Abstract

Preeclampsia is a serious pregnancy disorder which in extreme cases may lead to maternal and fetal injury or death. Preexisting conditions which increase oxidative stress, e.g., hypertension and diabetes, increase the mother’s risk to develop preeclampsia. Previously, we established that when the extracellular matrix is exposed to oxidative stress, trophoblast function is impaired, and this may lead to improper placentation. We investigated how the oxidative ECM present in preeclampsia alters the behavior of first trimester extravillous trophoblasts. We demonstrate elevated levels of advanced glycation end products (AGE) and lipid oxidation end product 4-hydroxynonenal in preeclamptic ECM (28%, and 32% increase vs control, respectively) accompanied with 35% and 82% more 3-chlorotyrosine and 3-nitrotyrosine vs control, respectively. Furthermore, we hypothesized that 670 nm phototherapy, which has antioxidant properties, reverses the observed trophoblast dysfunction as depicted in the improved migration and reduction in apoptosis. Since NO is critical for placentation, we examined eNOS activity in preeclamptic placentas compared to healthy ones and found no differences; however, 670 nm light treatment triggered enhanced NO availability presumably by using alternative NO sources. Light exposure decreased apoptosis and restored trophoblast migration to levels in trophoblasts cultured on preeclamptic ECM. Moreover, 670 nm irradiation restored expression of Transforming Growth Factor (TGFβ) and Placental Growth Factor (PLGF) to levels observed in trophoblasts cultured on healthy placental ECM. We conclude the application of 670 nm light can successfully mitigate the damaged placental microenvironment of late onset preeclampsia as depicted by the restored trophoblast behavior.

Funder

Department of Anesthesiology, MCW

Publisher

Hindawi Limited

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3