Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome

Author:

Sun Jiandong1,Liu Yan1,Hao Xiaoning1ORCID,Baudry Michel2ORCID,Bi Xiaoning1ORCID

Affiliation:

1. College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA

2. College of Dental Medicine, Western University of Health Sciences, Pomona, California 91766, USA

Abstract

Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.

Funder

Daljit and Elaine Sarkaria Chair

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3