Effect of Eu3+ Concentration on the BaAl2O4/CaAl4O7: x% Eu3+ (0 ≤ x ≤ 5.5) Mixed-Phase Nanophosphors Synthesized Using Citrate Sol-Gel Method

Author:

Mahman Bamba1ORCID,Sithole Mpho Enoch1

Affiliation:

1. Department of Physics, Sefako Makgatho Health Sciences University, P. O. Box 94, Medunsa 0204, South Africa

Abstract

A series of undoped mixed-phase BaAl2O4/CaAl4O7 (hereafter called BC) and doped BC: x% Eu3+ (0 < x ≤ 5.5) nanophosphors were successfully prepared by the citrate sol-gel technique. Their structure, morphology, and optical properties were studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD and SEM showed that all the BC:x% Eu3+ samples consisted of the crystalline structure of the mixed phases of both the BaAl2O4 and CaAl4O7 materials. The structure resembles more that of the BaAl2O4 than the CaAl4O7 phase. The TEM results suggest that the crystallite sizes are in the nanometer scale with rod-like particles. PL results showed multiple emission peaks located at 436, 590, 616, 656, and 703 nm, which were assigned to the intrinsic defects within the BC matrix, 5D0 ⟶ 7F1, 5D0 ⟶ 7F2, 5D0 ⟶ 7F3, and 5D0 ⟶ 7F4 transitions of Eu3+, respectively. The decay curves evidently showed that the nanophosphors have persistent luminescence. The Commission Internationale de l’Eclairage (CIE) analysis revealed that doping has tuned the emission colour from blue to orange-red. The results indicate that the Eu3+-doped samples can potentially be used in the orange/red-emitting phosphors.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3