Gene Mutation Classification through Text Evidence Facilitating Cancer Tumour Detection

Author:

Gupta Meenu1ORCID,Wu Hao2,Arora Simrann3ORCID,Gupta Akash3ORCID,Chaudhary Gopal3ORCID,Hua Qiaozhi4ORCID

Affiliation:

1. Department of Computer Science and Engineering, Chandigarh University, Ajitgarh, Punjab, India

2. Digital Zhejiang Technology Operations Co., Ltd., Hangzhou, China

3. Bharati Vidyapeeth’s College of Engineering, New Delhi, India

4. Computer School, Hubei University of Arts and Science, Xiangyang 441000, China

Abstract

A cancer tumour consists of thousands of genetic mutations. Even after advancement in technology, the task of distinguishing genetic mutations, which act as driver for the growth of tumour with passengers (Neutral Genetic Mutations), is still being done manually. This is a time-consuming process where pathologists interpret every genetic mutation from the clinical evidence manually. These clinical shreds of evidence belong to a total of nine classes, but the criterion of classification is still unknown. The main aim of this research is to propose a multiclass classifier to classify the genetic mutations based on clinical evidence (i.e., the text description of these genetic mutations) using Natural Language Processing (NLP) techniques. The dataset for this research is taken from Kaggle and is provided by the Memorial Sloan Kettering Cancer Center (MSKCC). The world-class researchers and oncologists contribute the dataset. Three text transformation models, namely, CountVectorizer, TfidfVectorizer, and Word2Vec, are utilized for the conversion of text to a matrix of token counts. Three machine learning classification models, namely, Logistic Regression (LR), Random Forest (RF), and XGBoost (XGB), along with the Recurrent Neural Network (RNN) model of deep learning, are applied to the sparse matrix (keywords count representation) of text descriptions. The accuracy score of all the proposed classifiers is evaluated by using the confusion matrix. Finally, the empirical results show that the RNN model of deep learning has performed better than other proposed classifiers with the highest accuracy of 70%.

Funder

Science and Technology Innovation China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3