Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method

Author:

Jin Jiaoying1,Yang Linjun1,Zhang Xuming1,Ding Mingyue1ORCID

Affiliation:

1. Department of Biomedical Engineering, School of Life Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3