Sequential Extractions and Toxicity Potential of Trace Metals Absorbed into Airborne Particles in an Urban Atmosphere of Southwestern Nigeria

Author:

Olumayede Emmanuel Gbenga1ORCID,Ediagbonya Thompson Faraday2

Affiliation:

1. Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Nigeria

2. Department of Chemical Sciences, Ondo State University of Science and Technology, Okitipupa, Ondo, Nigeria

Abstract

The paper investigates the hypothesis that biotoxicities of trace metals depend not only on the concentration as expressed by the total amount, but also on their geochemical fractions and bioavailability. Airborne particles were collected using SKC Air Check XR 5000 high volume Sampler at a human breathing height of 1.5–2.0 meters, during the dry season months from November 2014 to March 2015 at different locations in Akure (7°10′N and 5°15′E). The geochemical-based sequential extractions were performed on the particles using a series of increasingly stringent solutions selected to extract metals (Cd, Cu, Cr, Ni, Pb, Zn, and Mn) into four operational geochemical phases—exchangeable, reducible, organic, and residual—and then quantified using an Atomic Absorption Spectrophotometer. The results showed metals concentration of order Pb > Cr > Cd > Zn > Ni > Cu > Mn. However, most metals in the samples exist in nonmobile fractions: exchangeable (6.43–16.2%), reducible (32.58–47.39%), organic (4.73–9.88%), and residual (18.28–27.53%). The pollution indices show ingestion as the leading route of metal exposure, with noncarcinogenic (HQ) and cancer risk (HI) for humans in the area being higher than 1.0 × 10−4, indicating a health threat.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3