Artificial Intelligence Algorithm-Based Intraoperative Magnetic Resonance Navigation for Glioma Resection

Author:

Wei Jianqiang1ORCID,Zhang Chunman2ORCID,Ma Liujia2ORCID,Zhang Chunrui3ORCID

Affiliation:

1. Neurovascular Interventional Therapy Center, Affiliated Hospital of Yan’an University, Yan’an 716000, Shaanxi, China

2. Department of Neurosurgery, Affiliated Hospital of Yan’an University, Yan’an 716000, Shaanxi, China

3. Department of Neurology, Hanzhong People’s Hospital, Hanzhong 723000, Shaanxi, China

Abstract

The study aimed to analyze the application value of artificial intelligence algorithm-based intraoperative magnetic resonance imaging (iMRI) in neurosurgical glioma resection. 108 patients with glioma in a hospital were selected and divided into the experimental group (intraoperative magnetic resonance assisted glioma resection) and the control group (conventional surgical experience resection), with 54 patients in each group. After the resection, the tumor resection rate, NIHSS (National Institute of Health Stroke Scale) score, Karnofsky score, and postoperative intracranial infection were calculated in the two groups. The results revealed that the average tumor resection rate in the experimental group was significantly higher than that in the control group (P < 0.05). There was no significant difference in Karnofsky score before and after the operation in the experimental group (P > 0.05). There was no significant difference in NIHSS score between the experimental group and the control group after resection (P > 0.05). The number of patients with postoperative neurological deficits in the experimental group was smaller than that in the control group. In addition, there was no significant difference in infection rates between the two groups after glioma resection (P > 0.05). In summary, intraoperative magnetic resonance navigation on the basis of a segmentation dictionary learning algorithm has great clinical value in neurosurgical glioma resection. It can maximize the removal of tumors and ensure the integrity of neurological function while avoiding an increased risk of postoperative infection, which is of great significance for the treatment of glioma.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3