Robust Anomaly Recognition in Hydraulic Structural Safety Monitoring: A Methodology Based on Deconfounding Boosted Regression Trees

Author:

Li Hairui1ORCID,Liu Xuemei1ORCID,Chen Xiaolu2,Huai Xianfeng2

Affiliation:

1. North China University of Water Resources and Electric Power, Zhengzhou, China

2. China South-to-North Water Diversion Group Middle Route Co., Ltd., Beijing, China

Abstract

Analyzing monitoring data to recognize structural anomalies is a typical intelligent application of structural safety monitoring, which is of great significance to hydraulic engineering operational management. Many regression modeling methods have been developed to describe the complex statistical relationships between engineering safety monitoring points, which in turn can be used to recognize abnormal data. However, existing studies are devoted to introducing the correlation between adjacent response points to improve prediction accuracy, ignoring the detrimental effects on anomaly recognition, especially the pseudo-regression problem. In this paper, an anomaly recognition method is proposed from the perspective of causal inference to realize the best exploitation of various types of monitoring information in model construction, including four steps of constructing causal graph, regression modeling, model interpretation, and anomaly recognition. In regression modeling stage, two deconfounding machine learning models, two-stage boosted regression trees and copula debiased boosted regression trees, are proposed for recovering the causal effects of correlated response points. The validation was carried out with Shanmen River culvert monitoring data, and experiment results showed that the proposed method in this paper has better anomaly recognition compared to existing regression modeling methods, as shown by lower false alarm rates and lower averaged missing alarm rates under different structural anomaly scenarios.

Funder

Henan Academy of Sciences

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3