Micromechanical Properties of Steel-Fiber-Reinforced Cementitious Composites Characterized with Nanoindentation

Author:

Zhao Yan-Ru12ORCID,Wang Lei23,Dong Yan-Ying1

Affiliation:

1. School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics, Hohhot 010051, China

3. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

The micromechanical properties of the steel-fiber-reinforced cementitious composites with different water-binder ratios and silica fume contents were studied by nanoindentation. The elastic modulus, indentation hardness, total input energy, and ratio of the elastic deformation energy to the total input energy were analyzed in the interfacial transition zone (ITZ) and the cement matrix. The results show that with the reduction of water-binder ratio in the range of 0.18–0.24, the elastic modulus, indentation hardness, elastic deformation capacity, and energy dissipation capacity increased in the ITZ and cement matrix, and the increase of the ITZ was greater than that of the matrix, yet the ITZ did not disappear. With the increase of silica fume content in the range of 0–30%, the weak ITZ was gradually strengthened or even disappeared. In terms of obtaining the stronger ITZ, adding silica fume is more effective than reducing the water-binder ratio. When the water-binder ratio was high at 0.24, large silica fume contents (30%) had significant effects on enhancing the micromechanical properties of the ITZ and matrix. At a low water-binder ratio of 0.18, large silica fume contents (30%) enhanced the micromechanical properties of the ITZ while degrading those of the cement matrix.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3