Research on a Self-Coupling PID Control Strategy for a ZVS Phase-Shift Full-Bridge Converter

Author:

Sun Haidong1ORCID,Liu Cheng1ORCID,Zhang Hao1ORCID,Cheng Yanming1ORCID,Qu Yongyin1ORCID

Affiliation:

1. College of Electrical and Information Engineering, Beihua University, Jilin, China

Abstract

As an important part of the high-frequency switching power supply, the control accuracy of the phase-shift full-bridge converter directly affects the efficiency of the switching power supply. To improve the stability and antidisturbance ability of phase-shift control systems, this article presents a dual closed-loop control system based on Self-Coupling PID (SC-PID) control and applies the SC-PID control strategy to the voltage control of the phase-shift full-bridge converter. To begin with, in response to the contradiction of traditional PID, SC-PID breaks the limitation of PID control by introducing a new control idea instead of weighted summation of each gain, which fundamentally solves the contradiction between overshoot and rapidity. Then, using the dimension attributes between gains to develop new tuning rules to solve the system load disturbance, output voltage deviation from the reference value, and other problems, the purpose is to ensure the stability of the output voltage and improve the control effect. At the same time, the stability of the whole control system is analyzed in the complex frequency domain. Finally, with the same main circuit and parameters, three types of controllers are built separately, and using MATLAB for simulation comparison, the simulation results show that the control system based on SC-PID has better steady-state accuracy, faster response, and better robustness, which proves the feasibility of the SC-PID control idea.

Funder

Department of Science and Technology of Jilin Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3