Affiliation:
1. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
Abstract
Following the bike-sharing system, the shared e-bike becomes increasingly popular due to the advantage in speed, trip distance, and so forth. However, limited research has investigated the impact of the introduction of shared e-bikes on the existing bike-sharing systems. This paper aims to study the effect of shared e-bikes on the traditional bike-sharing system and determine the optimal fleet deployment strategy under a bimodal transportation system. A stochastic multiperiod optimisation model is formulated to capture the demand uncertainty of travelers. The branch-and-bound algorithm is applied to solve problem. A 15-station numerical example is applied to examine the validity of the model and the effectiveness of the solution algorithm. The performance of integrated e-bike and bike-sharing system has been compared with the traditional bike-sharing system. The impacts of the charging efficiency, fleet size, and pricing strategy of e-bike-sharing system on the traditional bike-sharing system have been examined.
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献