Argan Tree (Argania spinosa (L.) Skeels) Mapping Based on Multisensor Fusion of Satellite Imagery in Essaouira Province, Morocco

Author:

Moumni Aicha1ORCID,Belghazi Tarik2ORCID,Maksoudi Brahim2ORCID,Lahrouni Abderrahman1ORCID

Affiliation:

1. Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakesh, Morocco

2. Regional Center of Forest Research, 40000, Marrakesh, Morocco

Abstract

Tree species identification and their geospatial distribution mapping are crucial for forest monitoring and management. The satellite-based remote sensing time series of Sentinel missions (Sentinel-1 and Sentinel-2) are a perfect tool to map the type, location, and extent of forest cover over large areas at local or global scale. This study is focused on the geospatial mapping of the endemic argan tree (Argania spinosa (L.) Skeels) and the identification of two other tree species (sandarac gum and olive trees) using optical and synthetic aperture radar (SAR) time series. The objective of the present work is to detect the actual state of forest species trees, more specifically the argan tree, in order to be able to study and analyze forest changes (degradation) and make new strategies to protect this endemic tree. The study was conducted over an area located in Essaouira province, Morocco. The support vector machine (SVM) algorithm was used for the classification of the two types of data. We first classified the optical data for tree species identification and mapping. Second, the SAR time series were used to identify the argan tree and distinguish it from other species. Finally, the two types of satellite images were combined to improve and compare the results of classification with those obtained from single-source data. The overall accuracy (OA) of optical classification reached 86.9% with a kappa coefficient of 0.84 and declined strongly to 37.22% (kappa of 0.29) for SAR classification. The fusion of multisensor data (optical and SAR images) reached an OA of 86.51%. A postclassification was performed to improve the results. The classified images were smoothed, and therefore, the quantitative and qualitative results showed an improvement, in particular for optical classification with a highest OA of 89.78% (kappa coefficient of 0.88). The study confirmed the potential of the multitemporal optical data for accurate forest cover mapping and endemic species identification.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3