Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies

Author:

Tsai You-Tien1,Yeh Hsiang-Yuan2ORCID,Chao Chia-Ter134ORCID,Chiang Chih-Kang4

Affiliation:

1. Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan

2. School of Big Data Management, Soochow University, Taipei, Taiwan

3. Nephrology Division, Department of Internal Medicine, National Taiwan University School of Medicine, Taipei, Taiwan

4. Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan

Abstract

Vascular calcification (VC) describes the pathophysiological phenotype of calcium apatite deposition within the vascular wall, leading to vascular stiffening and the loss of compliance. VC is never benign; the presence and severity of VC correlate closely with the risk of myocardial events and cardiovascular mortality in multiple at-risk populations such as patients with diabetes and chronic kidney disease. Mitochondrial dysfunction involving each of vascular wall constituents (endothelia and vascular smooth muscle cells (VSMCs)) aggravates various vascular pathologies, including atherosclerosis and VC. However, few studies address the pathogenic role of mitochondrial dysfunction during the course of VC, and mitochondrial reactive oxygen species (ROS) seem to lie in the pathophysiologic epicenter. Superoxide dismutase 2 (SOD2), through its preferential localization to the mitochondria, stands at the forefront against mitochondrial ROS in VSMCs and thus potentially modifies the probability of VC initiation or progression. In this review, we will provide a literature-based summary regarding the relationship between SOD2 and VC in the context of VSMCs. Apart from the conventional wisdom of attenuating mitochondrial ROS, SOD2 has been found to affect mitophagy and the formation of the autophagosome, suppress JAK/STAT as well as PI3K/Akt signaling, and retard vascular senescence, all of which underlie the beneficial influences on VC exerted by SOD2. More importantly, we outline the therapeutic potential of a novel SOD2-targeted strategy for the treatment of VC, including an ever-expanding list of pharmaceuticals and natural compounds. It is expected that VSMC SOD2 will become an important druggable target for treating VC in the future.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3