A Novel Stacking Heterogeneous Ensemble Model with Hybrid Wrapper-Based Feature Selection for Reservoir Productivity Predictions

Author:

Zhou Changlin1,Zhou Lang2,Liu Fei1,Chen Weihua1,Wang Qian1,Liang Keliang3,Guo Wenqiu4,Zhou Liying5ORCID

Affiliation:

1. The Fracturing and Acidizing Research Institute, The Engineering Technology Research Institute, Petro China Southwest Oil & Gasfield Company, Chengdu 610031, China

2. The Engineering Technology Department, Petro China Southwest Oil & Gasfield Company, Chengdu 610051, China

3. The Downhole Operation Company, China National Petroleum Corporation Chuanqing Drilling Engineering Co., Ltd, Chengdu 610051, China

4. Sichuan Wisdom Think Tank Consulting Co., Ltd, Chengdu 610041, China

5. Business School, Sichuan University, Chengdu 610064, China

Abstract

Acid fracturing is the most important stimulation method in the carbonate reservoir. Due to the high cost and high risk of acid fracturing, it is necessary to predict the reservoir productivity before acid fracturing, which can provide support to optimize the parameters of acid fracturing. However, the productivity of a single well is affected by various construction parameters and geological conditions. Overfitting can occur when performing productivity prediction tasks on the high-dimension, small-sized reservoir, and acid fracturing dataset. Therefore, this study developed a stacking heterogeneous ensemble model with a hybrid wrapper-based feature selection strategy to forecast reservoir productivity, resolve the overfitting problem, and improve productivity prediction. Compared to other baseline models, the proposed model was found to have the best predictive performances on the test set and effectively deal with the overfitting. The results proved that the hybrid wrapper-based feature selection strategy introduced in this study reduced data acquisition costs and improved model comprehensibility without reducing model performance.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3