Blood Plasma Metabolic Profile of Newborns with Hypoxic-Ischaemic Encephalopathy by GC-MS

Author:

Jia Yanjuan12ORCID,Jia Xiaoni3ORCID,Xu Hui12ORCID,Gao Lan4ORCID,Wei Chaojun12ORCID,Li Yonghong12ORCID,Liu Xia3ORCID,Gao Xiaoling12ORCID,Wei Li5ORCID

Affiliation:

1. NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China

2. The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China

3. The Neonatal Department, Qingyang People's Hospital, Qingyang, 73000, China

4. The Department of Life Science, Lanzhou University, Lanzhou, 730000, China

5. The Laboratory Center, Gansu Provincial Hospital, Lanzhou, 730000, China

Abstract

Background. Early diagnosis of hypoxic-ischaemic encephalopathy (HIE) is crucial in preventing neurodevelopmental disabilities and reducing morbidity and mortality. The study was to investigate the plasma metabolic signatures in the peripheral blood of HIE newborns and explore the potential diagnostic biomarkers. Method. In the present study, 24 newborns with HIE and 24 healthy controls were recruited. The plasma metabolites were measured by gas chromatography-mass spectrometry (GC-MS), and the raw data was standardized by the EigenMS method. Significantly differential metabolites were identified by multivariate statistics. Pathway enrichment was performed by bioinformatics analysis. Meanwhile, the diagnostic value of candidate biomarkers was evaluated. Result. The multivariate statistical models showed a robust capacity to distinguish the HIE cases from the controls. 52 metabolites were completely annotated. 331 significantly changed pathways were enriched based on seven databases, including 33 overlapped pathways. Most of them were related to amino acid metabolism, energy metabolism, neurotransmitter biosynthesis, pyrimidine metabolism, the regulation of HIF by oxygen, and GPCR downstream signaling. 14 candidate metabolites showed great diagnostic potential on HIE. Among them, alpha-ketoglutaric acid has the potential to assess the severity of HIE in particular. Conclusion. The blood plasma metabolic profile could comprehensively reflect the metabolic disorders of the whole body under hypoxia-ischaemic injury. Several candidate metabolites may serve as promising biomarkers for the early diagnosis of HIE. Further validation based on large clinical samples and the establishment of guidelines for the clinical application of mass spectrometry data standardization methods are imperative in the future.

Funder

Science and Technology Bureau of Chengguan District of Lanzhou

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3