Affiliation:
1. College of Information Science and Engineering, Northeastern University, Shenyang, China
2. Xikang Healthcare Technology Co., Ltd, Shenyang, China
3. School of Business, Qingdao University, Qingdao, China
Abstract
As one of the most effective medical technologies for the infertile patients, in vitro fertilization (IVF) has been more and more widely developed in recent years. However, prolonged waiting for IVF procedures has become a problem of great concern, since this technology is only mastered by the large general hospitals. To deal with the insufficiency of IVF service capacity, this paper studies an IVF queuing network in an integrated cloud healthcare system, where the two key medical services, that is, egg retrieval and transplantation, are assigned to accomplish in the general hospital, while the routine medical tests are assigned into the community hospital. Based on continuous-time Markov procedure, a dynamic large-scale server scheduling problem in this complicated service network is modeled with consideration of different arrival rates of multiple type of patients and different service capacities of multiple servers that can be defined as doctors of the general hospital. To solve this model, a reinforcement learning (RL) algorithm is proposed, where the reward functions are designed for four conflicting subcosts: setup cost, patient waiting cost, penalty cost for unsatisfied patient personal preferences, and medical cost of patient. The experimental results show that the optimal service rule of each server’s queue obtained by the RL method is significantly superior to the traditional service rule.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献