A Complex Network Approach for Quantitative Characterization and Robustness Analysis of Sandstone Pore Network Structure

Author:

Hu Yuhao12,Liu Guannan123ORCID,Gao Feng23,Yue Fengtian23,Gao Tao23

Affiliation:

1. Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, Mechanics and Civil Engineering Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

3. Laboratory of Mine Cooling and Coal-Heat Integrated Exploitation, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

The rational characterization and quantitative analysis of the complex internal pore structure of rock is the foundation to solve many underground engineering problems. In this paper, CT imaging technology is used to directly characterize the three-dimensional pore network topology of sandstone with different porosity. Then, in view of the problem, which is difficult to quantify the detailed topological structure of the sandstone pore networks in the previous study, the new complex network theory is used to characterize the pore structure. PageRank algorithm is based on the number of connections between targets as a measure index to rank the targets, so the network degree distribution, average path length, clustering coefficient, and robustness based on PageRank algorithm and permeability-related topological parameters are studied. The research shows that the degree distribution of sandstone pore network satisfies power law distribution, and it can be characterized by scale-free network model. The permeability of rock is inversely proportional to the average path length of sandstone network. The sandstone pore network has strong robustness to random disturbance, while a small number of pores with special topological properties play a key role in the macroscopic permeability of sandstone. This study attempts to provide a new perspective of quantifying the microstructure of the pore network of sandstone and revealing the microscopic structure mechanism of macroscopic permeability of pore rocks.

Funder

Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3