Intelligent Recommendation System Based on Mathematical Modeling in Personalized Data Mining

Author:

Cui Yimin1ORCID

Affiliation:

1. School of Information Engineering, Xi’an University, Xi’an 710065, Shaanxi, China

Abstract

With the advent of the era of big data, data mining has become one of the key technologies in the field of research and business. In order to improve the efficiency of data mining, this paper studies data mining based on the intelligent recommendation system. Firstly, this paper makes mathematical modeling of the intelligent recommendation system based on association rules. After analyzing the requirements of the intelligent recommendation system, Java 2 Platform, Enterprise Edition, technology is used to divide the system architecture into the presentation layer, business logic layer, and data layer. Recommendation module is divided into three substages: data representation, model learning, and recommendation engine. Then, the fuzzy clustering algorithm is used to optimize the system. After the system is built, the performance of the system is evaluated, and the evaluation indexes include accuracy, coverage, and response time. Finally, the system is put into a trial operation of an e-commerce platform. The click-through rate and purchase conversion rate of recommended products before and after the operation are compared, and a questionnaire survey is randomly launched to the platform users to analyze the user satisfaction. The experimental data show that the MAE of this system is the lowest, maintained at about 0.73, and its accuracy is the highest; before the recommended threshold exceeds 0.5, the average coverage rate of this system is the highest: 0.75; in Q1–Q5 subsets, the shortest response time of the system is 0.2 s. Before and after the operation of the system, the average click-through rate increased by 11.04%, and the average purchase rate increased by 9.35%. Among the 1216 users, 43% of the users were satisfied with 4 and 9% with 1. This shows that the system algorithm convergence speed is fast; it can recommend products more in line with user needs and interests and promote higher click-through rate and purchase rate, but user satisfaction can be further improved.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. English Network Teaching Model and Design of Evaluation System Based on Association Rule Algorithm;International Journal of Information and Communication Technology Education;2024-07-17

2. Application of Recommendation Algorithms Based on Social Relationships and Behavioral Characteristics in Music Online Teaching;International Journal of Web-Based Learning and Teaching Technologies;2024-02-14

3. Research on the Design and Optimization of Russian Spoken Wisdom Education System Based on Recommendation Algorithm;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

4. Design and Implementation of Attention-Based CR System in the Context of Big Data;IEEE Access;2024

5. An Accuracy Study of Personalized Recommendation System for E-commerce Based on Big Data Analysis;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3