A Novel Region-Extreme Convolutional Neural Network for Melanoma Malignancy Recognition

Author:

Nida Nudrat1ORCID,Irtaza Aun2ORCID,Yousaf Muhammad Haroon13ORCID

Affiliation:

1. Department of Computer Engineering, University of Engineering and Technology-Taxila, Taxila, Pakistan

2. Department of Computer Science, University of Engineering and Technology-Taxila, Taxila, Pakistan

3. Swarm Robotics Lab, National Centre of Robotics and Automation, Islamabad, Pakistan

Abstract

Melanoma malignancy recognition is a challenging task due to the existence of intraclass similarity, natural or clinical artefacts, skin contrast variation, and higher visual similarity among the normal or melanoma-affected skin. To overcome these problems, we propose a novel solution by leveraging “region-extreme convolutional neural network” for melanoma malignancy recognition as malignant or benign. Recent works on melanoma malignancy recognition employed the traditional machine learning techniques based on various handcrafted features or the recently introduced CNN network. However, the efficient training of these models is possible, if they localize the melanoma affected region and learn high-level feature representation from melanoma lesion to predict melanoma malignancy. In this paper, we incorporate this observation and propose a novel “region-extreme convolutional neural network” for melanoma malignancy recognition. Our proposed region-extreme convolutional neural network refines dermoscopy images to eliminate natural or clinical artefacts, localizes melanoma affected region, and defines precise boundary around the melanoma lesion. The defined melanoma lesion is used to generate deep feature maps for model learning using the extreme learning machine (ELM) classifier. The proposed model is evaluated on two challenge datasets (ISIC-2016 and ISIC-2017) and performs better than ISIC challenge winners. Our region-extreme convolutional neural network recognizes the melanoma malignancy 85% on ISIC-2016 and 93% on ISIC-2017 datasets. Our region-extreme convolutional neural network precisely segments the melanoma lesion with an average Jaccard index of 0.93 and Dice score of 0.94. The region-extreme convolutional neural network has several advantages: it eliminates the clinical and natural artefacts from dermoscopic images, precisely localizes and segments the melanoma lesion, and improves the melanoma malignancy recognition through feedforward model learning. The region-extreme convolutional neural network achieves significant performance improvement over existing methods that makes it adaptable for solving complex medical image analysis problems.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3