Revisiting the Benefits of Combining Data of a Different Nature: Strategic Forecasting of New Mode Alternatives

Author:

Guzman Luis A.1ORCID,Arellana Julian2ORCID,Cantillo-García Victor1ORCID,Ortúzar Juan de Dios3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia

2. Department of Civil and Environmental Engineering, Universidad Del Norte, Barranquilla, Colombia

3. Department of Transport Engineering and Logistics, Instituto Sistemas Complejos de Ingeniería (ISCI), BRT+ Centre of Excellence, Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract

We revisit the practice of combining revealed (RP) and stated preference (SP) data (i.e., the data enrichment, DE, paradigm) in discrete choice models using secondary data obtained from emerging sources; these facilitate access to massive information about travel choices and can be used to improve transport models. Even though the benefits of the DE paradigm have been known for years, there is a large gap between the state of practice and the state of the art, particularly in Global South countries (but also in many industrialized nations). We use a SP dataset considering two new transport alternatives (train and metro) and a RP dataset based on a large mobility survey in Bogotá, Colombia, complemented with fairly precise level-of-service data obtained using GIS utilities and the Distance Matrix API by Google. Our results allow us to discuss good practice, identify barriers and challenges to the paradigm’s application, and draw recommendations for forecasting the demand for new alternatives using joint RP and SP data.

Funder

Bogotá Urban Planning Department

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3