Analysis on the Influence Mechanism of Cooling Water on Turbocharger and Optimum Coolant Mass Flow Rate Intelligent Prediction

Author:

Lu Chunping1ORCID,Li Jianyu12ORCID,Tan Dongli3ORCID

Affiliation:

1. China Metallurgic Jingcheng (Xiangtan) Heavy Industry Equipment Co., Ltd., Hunan, China

2. Hunan Valin Xiangtan Iron & Steel Co., Ltd., Xiangtan 411101, China

3. Institute of the New Energy and Energy-Saving & Emission-reduction, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

Due to the high speed and high temperature of engine exhaust, the turbocharger bears very high heat load. The heat dissipation of turbocharger is an important factor to determine the service life and performance of turbocharger. In this paper, a mathematical model of the fluid-structure interaction heat transfer of the water-cooled bearing body of turbocharger was established and the cooling performance of a 1.8 L gasoline engine turbocharger was analyzed. The effects of cooling water inlet flow, engine exhaust temperature, cooling water inlet temperature, and wall roughness of cooling water chamber on the cooling performance of important parts of the bearing body were analyzed by the numerical simulation method. In addition, the cooling water flow required by bearing body with a different structure under different working conditions was studied based on the orthogonal test method. The predicted result shows a good agreement with the experiment result, which could provide a reference for relevant production design and cooling strategy. In the range larger than the thickness of laminar flow bottom layer of the cooling water chamber wall, the increase of wall roughness height can enhance the heat transfer between the fluid and the solid.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3