An Animated Functional Data Analysis Interface to Cluster Rapid Lung Function Decline and Enhance Center-Level Care in Cystic Fibrosis

Author:

Pratt Jesse1ORCID,Su Weiji2ORCID,Hayes Don34ORCID,Clancy John P.345ORCID,Szczesniak Rhonda D.134ORCID

Affiliation:

1. Division of Biostatistics & Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

2. Global Statistical Sciences Eli Lilly and Company, Indianapolis, IN 46285, USA

3. Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

4. Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA

5. Cystic Fibrosis Foundation, Bethesda, MD, USA

Abstract

Identifying disease progression through enhanced decision support tools is key to chronic management in cystic fibrosis at both the patient and care center level. Rapid decline in lung function relative to patient level and center norms is an important predictor of outcomes. Our objectives were to construct and utilize center-level classification of rapid decliners to develop an animated dashboard for comparisons within patients over time, multiple patients within centers, or between centers. A functional data analysis technique known as functional principal components analysis was applied to lung function trajectories from 18,387 patients across 247 accredited centers followed through the United States Cystic Fibrosis Foundation Patient Registry, in order to cluster patients into rapid decline phenotypes. Smaller centers (<30 patients) had older patients with lower baseline lung function and less severe rates of decline and had maximal decline later, compared to medium (30–150 patients) or large (>150 patients) centers. Small centers also had the lowest prevalence of early rapid decliners (17.7%, versus 24% and 25.7% for medium and large centers, resp.). The animated functional data analysis dashboard illustrated clustering and center-specific summaries of the rapid decline phenotypes. Clinical scenarios and utility of the center-level functional principal components analysis (FPCA) approach are considered and discussed.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3