Freezing Pressurized Water into a Standard Cylindrical Ice Sample in a Triaxial Cell

Author:

Wang Baosheng1ORCID,Sun Peixin1,Luo Tingting12,Zhang Tao1,Yang Weihao12ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China

Abstract

The mechanical characteristics of high-pressure frozen ice are a basis for the design of deep underground frozen walls, the drilling of thick permafrost and ice sheets, and the probing of extraterrestrial ice. The continuous control of the sample stress state from freezing to testing is essential for the experimental study of in situ mechanical response of high-pressure frozen ice. In the context, we developed a preparation technique for freezing pressurized water into a standard cylindrical ice sample in a triaxial cell. Through theoretical analysis, a cylindrical water sample with precise dimensions and strong sealing was fabricated using heat shrinkable tubing, sectional end caps, and an assembly cylinder. A mounting device was designed to insert the water sample into the triaxial cell without deformation. In order to deal with the lateral surface irregular of the resulting ice sample caused by freezing expansion, we proposed a pressurization method in which the volume of the confining medium is controlled to restrict the radial deformation of the sample, and the axial pressure on the sample is kept constant; thus, the freezing expansion will develop along the height direction through releasing the expansion pressure. Based on the analysis of sample deformation and finite element numerical simulations, the control method of the temperature fields of the sample and the confining medium was obtained, and the standard cylindrical ice sample which satisfies the geometric accuracy requirements was produced. The comparison of ice samples frozen by different freezing methods showed that the control of the confining medium mean temperature and the sample unidirectional freezing is necessary to improve the dimensional precision of the ice sample.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3