Adaptive Reconstruction Algorithm Based on Compressed Sensing Broadband Receiver

Author:

Si Wei-Jian12,Liu Qiang12ORCID,Deng Zhi-An12ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin 150001, China

Abstract

Existing greedy reconstruction algorithms require signal sparsity, and the remaining sparsity adaptive algorithms can be reconstructed but cannot achieve accurate sparsity estimation. To address this problem, a blind sparsity reconstruction algorithm is proposed in this paper, which is applied to compressed sensing radar receiver system. The proposed algorithm can realize the estimation of signal sparsity and channel position estimation, which mainly consists of two parts. The first part is to use fast search based on dichotomy search, which is based on the high probability reconstruction of greedy algorithm, and uses dichotomy search to cover the number of sparsity. The second part is the signal matching and tracking algorithm, which is mainly used to judge the signal position and reconstruct the signal. Combine the two parts together to realize the blind estimation of the sparsity and the accurate estimation of the number of signals when the number of signals is unknown. The experimental analyses are carried out to evaluate the performance of the reconstruction probability, the accuracy of sparsity estimation, the running time of the algorithm, and the signal-to-noise ratio.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3