Monte Carlo Node Localization Based on Improved QUARTE Optimization

Author:

Song Ling12ORCID,Jiang Xiaoyu1ORCID,Wang Liying1ORCID,Hu Xiaochun3ORCID

Affiliation:

1. School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, China

3. School of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530007, China

Abstract

Wireless sensor network (WSN) is a research hot spot of scholars in recent years, in which node localization technology is one of the key technologies in the field of wireless sensor network. At present, there are more researches on static node localization, but relatively few on mobile node localization. The Monte Carlo mobile node localization algorithm utilizes the mobility of nodes to overcome the impact of node velocity on positioning accuracy. However, there are still several problems: first, the demand for anchor nodes is large, which makes the positioning cost too high; second, the sampling efficiency is low, and it is easy to fall into the infinite loop of sampling and filtering; and third, the positioning accuracy and positioning coverage are not high. In order to solve the above three problems, this paper proposes a Monte Carlo node location algorithm based on improved QUasi-Affine TRansformation Evolutionary (QUATRE) optimization. The algorithm firstly selects the high-quality common nodes in the range of one hop of unknown nodes as temporary anchor nodes, and takes the temporary anchor nodes and anchor nodes as the reference nodes for positioning, so as to construct a more accurate sampling area; then, the improved QUATRE optimization algorithm is used to obtain the estimated location of unknown nodes in the sampling area. Simulation experiments show that the Monte Carlo node positioning algorithm based on the improved QUATRE optimization has higher positioning accuracy and positioning coverage, especially when the number of anchor nodes is relatively small.

Funder

Guangxi Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3