Affiliation:
1. School of Computer and Electronic Information, Guangxi University, Nanning 530004, China
2. Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, China
3. School of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530007, China
Abstract
Wireless sensor network (WSN) is a research hot spot of scholars in recent years, in which node localization technology is one of the key technologies in the field of wireless sensor network. At present, there are more researches on static node localization, but relatively few on mobile node localization. The Monte Carlo mobile node localization algorithm utilizes the mobility of nodes to overcome the impact of node velocity on positioning accuracy. However, there are still several problems: first, the demand for anchor nodes is large, which makes the positioning cost too high; second, the sampling efficiency is low, and it is easy to fall into the infinite loop of sampling and filtering; and third, the positioning accuracy and positioning coverage are not high. In order to solve the above three problems, this paper proposes a Monte Carlo node location algorithm based on improved QUasi-Affine TRansformation Evolutionary (QUATRE) optimization. The algorithm firstly selects the high-quality common nodes in the range of one hop of unknown nodes as temporary anchor nodes, and takes the temporary anchor nodes and anchor nodes as the reference nodes for positioning, so as to construct a more accurate sampling area; then, the improved QUATRE optimization algorithm is used to obtain the estimated location of unknown nodes in the sampling area. Simulation experiments show that the Monte Carlo node positioning algorithm based on the improved QUATRE optimization has higher positioning accuracy and positioning coverage, especially when the number of anchor nodes is relatively small.
Funder
Guangxi Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献