Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency

Author:

Aniceto Rodrigo1,Xavier Rene1,Guimarães Valeria1,Hondo Fernanda1,Holanda Maristela1,Walter Maria Emilia1,Lifschitz Sérgio2

Affiliation:

1. Computer Science Department, University of Brasilia (UNB), 70910-900 Brasilia, DF, Brazil

2. Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900 Rio de Janeiro, RJ, Brazil

Abstract

Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COVID-19 pandemic: Is it the right time to develop interconnected national biomedical registries?;Genomics & Informatics;2021-12-31

2. Practical implications of using non‐relational databases to store large genomic data files and novel phenotypes;Journal of Animal Breeding and Genetics;2021-08-29

3. Automatic configuration of the Cassandra database using irace;PeerJ Computer Science;2021-08-05

4. Speed up Cassandra read path by using Coordinator Cache;2021 26th International Computer Conference, Computer Society of Iran (CSICC);2021-03-03

5. A Comparative Study of NoSQL Databases;Lecture Notes in Electrical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3