Thermodynamic Behaviors of a Kind of Self-Decoupling Magnetorheological Damper

Author:

Yu Guojun1,Du Chengbin2,Sun Tiger1

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

Abstract

A theoretical model of temperature change on a kind of self-decoupling magnetorheological (SDMR) damper was established based on conservation of energy, and the constraint equation for structural design parameters of the SDMR damper was improved to satisfy heat dissipation requirements in this work. According to the theoretical model and improved constraint equation, the main structure parameters of SDMR damper were obtained and the damper was tested. The temperature performance test results indicate that the rising temperature makes the damping force decline, and the main affection factors of temperature variation are excitation methods and input current. The results also show that the improved constraint equation and design method introduced are correct and efficient in the engineering.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3