Anti-Inflammatory Potentials of β-Ketoester Derivatives of N-Ary Succinimides: In Vitro, In Vivo, and Molecular Docking Studies

Author:

Alqahtani Yahya S.1,Jan Muhammad Saeed2ORCID,Mahnashi Mater H.1ORCID,Alyami Bandar A.1,Alqarni Ali O.1,Rashid Umer3,Mahmood Fawad4,Tariq Muhammad5ORCID,Sadiq Abdul6ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia

2. Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan

3. Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan

4. Department of Pharmacy, University of Peshawar, Peshawar, KP, Pakistan

5. Department PCB, Bayazid Rokhan Institute of Higher Studies, Kabul, Afghanistan

6. Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara Dir (L) 18000, KP, Pakistan

Abstract

Inflammation, being a well-known and complex pathological condition, is always a challenge to the human health. This research work was designed for a rationale-based anti-inflammatory study on β-ketoester derivatives of N-ary succinimides. The compounds (A–D) were synthesized by organocatalytic Michael addition. The compounds were initially screened for in vitro 5-lipoxygenase (5-LOX) and cyclooxygenase (COX-2) assays. For the in vivo activity, carrageenan-induced paw edema and arachidonic acid-induced ear edema tests were used. Furthermore, different in vivo pathways such as prostaglandins E2, histamine, leukotriene, and bradykinin were studied. The results were supported with molecular docking studies. Among the compounds, D (ethyl 1-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-2-oxocyclohexane-1-carboxylate) at a concentration of 1000 μg/ml showed significant inhibitory effects of 83.67% and 78.12% against COX-2 and 5-LOX in comparison to celecoxib and zileuton, respectively. Similarly, compound D also showed excellent in vivo anti-inflammatory potential. Amongst all the compounds, D demonstrated excellent (55.92 ± 2.95%) anti-inflammatory potential at maximum tested dose (100 mg/kg) which accomplished the highest significance at 4 h following the carrageenan insertion and stayed considerable ( P < 0.001 ) till the 5th hour of test sample injection. Compound D also exhibited excellent percent inhibition (63.81 ± 2.24%) at the highest dose in arachidonic acid-induced ear inflammation. On the basis of in vivo and in vitro results, compound D was subjected to various inflammation-causing agents such as histamine, prostaglandins E2, bradykinin, and leukotriene via the mouse paw edema test. Compound D revealed moderate effect (28.10 ± 1.64%) against histamine-induced paw edema while nonsignificant result (9.72 ± 3.125%) was marked for the bradykinin pathway. Compound D showed significance against edematogenic consequence of prostaglandin E2 (56.28–72.03%) and leukotriene (55.13 ± 2.25%) induced inflammation. In summary, our findings recommended that compound D possesses double acting anti-inflammatory properties inhibiting both COX and LOX pathways. Binding orientations and energy values computed via docking simulations support the results of the experimental in vitro evaluation.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3