Self-Adaptation Resource Allocation for Continuous Offloading Tasks in Pervasive Computing

Author:

Ehsan Aiman1,Haider Khurram Zeeshan12ORCID,Faisal Shahla23ORCID,Zahid Faisal Maqbool23ORCID,Wangari Isaac Mwangi4ORCID

Affiliation:

1. Department of Software Engineering, Government College University, Faisalabad, Pakistan

2. Center of Data Science, Government College University, Faisalabad, Pakistan

3. Department of Statistics, Government College University, Faisalabad, Pakistan

4. Department of Mathematics and Computer Science, Bomet University College, Bomet, Kenya

Abstract

Advancement in technology has led to an increase in data. Consequently, techniques such as deep learning and artificial intelligence which are used in deciphering data are increasingly becoming popular. Further, advancement in technology does increase user expectations on devices, including consumer interfaces such as mobile apps, virtual environments, or popular software systems. As a result, power from the battery is consumed fast as it is used in providing high definition display as well as in charging the sensors of the devices. Low latency requires more power consumption in certain conditions. Cloud computing improves the computational difficulties of smart devices with offloading. By optimizing the device’s parameters to make it easier to find optimal decisions for offloading tasks, using a metaheuristic algorithm to transfer the data or offload the task, cloud computing makes it easier. In cloud servers, we offload the tasks and limit their resources by simulating them in a virtual environment. Then we check resource parameters and compare them using metaheuristic algorithms. When comparing the default algorithm FCFS to ACO or PSO, we find that PSO has less battery or makespan time compared to FCFS or ACO. The energy consumption of devices is reduced if their resources are offloaded, so we compare the results of metaheuristic algorithms to find less battery usage or makespan time, resulting in the PSO increasing battery life or making the system more efficient.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Self-Adaptation Resource Allocation for Continuous Offloading Tasks in Pervasive Computing;Computational and Mathematical Methods in Medicine;2023-06-28

2. Computation Offloading and Task Scheduling Based on Improved Integer Particle Swarm Optimization in Fog Computing;2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE);2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3