Experimental Investigation on the Vibration Reduction Characteristics of an Optimized Heavy-Haul Railway Low-Vibration Track

Author:

Zeng Zhiping12ORCID,Wang Jundong1ORCID,Yin Huatuo3,Shen Shiwen1,Shuaibu Abdulmumin Ahmed2,Wang Weidong12

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China

2. Key Laboratory of Engineering Structure of Heavy Haul Railway (Central South University), Ministry of Education, Changsha, Hunan 410075, China

3. Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou, Guangdong 510000, China

Abstract

Heavy-haul railway has been developed rapidly in many countries in the world due to its great social and economic benefits. One of the key technologies for heavy-haul railway is the reduction of vibration on the track structures and its surrounding due to impact load induced by the train in service. The vibration behaviors of two kinds of low-vibration track (LVT) systems for heavy-haul railway are investigated in this paper. Firstly, two indoor full-scale low-vibration track models (new LVT and traditional LVT), which include rail, fastener, bearing block, rubber boot, track slab, and foundation base, were constructed according to design drawings. Secondly, the vibration responses of the different track components under the impact excitation of a dropping wheelset were measured. Thirdly, the time-domain characteristics of each track component of the two LVTs were compared by the acquired vibration time-history curves. Finally, the frequency-domain distribution was analyzed, and the vibration reduction performance was evaluated by the comprehensive time-frequency analysis results. The results show the new LVT has lower vibration acceleration, shorter duration of vibration period, lower vibration frequency of track components, and most importantly an obvious vibration reduction effect on the ground. The research results are useful to further optimize the design of LVT to reduce the vibration under train impact load.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3