Fungal Skin Disease Classification Using the Convolutional Neural Network

Author:

Nigat Tsedenya Debebe1ORCID,Sitote Tilahun Melak2ORCID,Gedefaw Berihun Molla3ORCID

Affiliation:

1. Information Technology, Faculty of Computing and Informatics, Jimma Institute of Technology, Jimma University, Jimma, Oromia, Ethiopia

2. Department of Computer Science and Engineering (CSE), School of Electrical Engineering and Computing, Adama Science and Technology University (ASTU), P.O. Box 1888, Ethiopia

3. Health Informatics, College of Medicine and Health Science, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia

Abstract

Skin is the outer cover of our body, which protects vital organs from harm. This important body part is often affected by a series of infections caused by fungus, bacteria, viruses, allergies, and dust. Millions of people suffer from skin diseases. It is one of the common causes of infection in sub-Saharan Africa. Skin disease can also be the cause of stigma and discrimination. Early and accurate diagnosis of skin disease can be vital for effective treatment. Laser and photonics-based technologies are used for the diagnosis of skin disease. These technologies are expensive and not affordable, especially for resource-limited countries like Ethiopia. Hence, image-based methods can be effective in reducing cost and time. There are previous studies on image-based diagnosis for skin disease. However, there are few scientific studies on tinea pedis and tinea corporis. In this study, the convolution neural network (CNN) has been used to classify fungal skin disease. The classification was carried out on the four most common fungal skin diseases: tinea pedis, tinea capitis, tinea corporis, and tinea unguium. The dataset consisted of a total of 407 fungal skin lesions collected from Dr. Gerbi Medium Clinic, Jimma, Ethiopia. Normalization of image size, conversion of RGB to grayscale, and balancing the intensity of the image have been carried out. Images were normalized to three sizes: 120 × 120, 150 × 150, and 224 × 224. Then, augmentation was applied. The developed model classified the four common fungal skin diseases with 93.3% accuracy. Comparisons were made with similar CNN architectures: MobileNetV2 and ResNet 50, and the proposed model was superior to both. This study may be an important addition to the very limited work on the detection of fungal skin disease. It can be used to build an automated image-based screening system for dermatology at an initial stage.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference26 articles.

1. UV Radiation and the Skin

2. Automatic diagnosis of skin diseases using convolution neural network

3. A Computer-aided diagnosis system for classifying prominent skin lesions using machine learning;N. Hameed

4. A Web-Based Skin Disease Diagnosis Using Convolutional Neural Networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3