Robust Data-Driven Fault Detection: An Application to Aircraft Air Data Sensors

Author:

Zhao Yunmei12,Zhao Hang1,Ai Jianliang1,Dong Yiqun1ORCID

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Abstract

Fault detection (FD) is important for health monitoring and safe operation of dynamical systems. Previous studies use model-based approaches which are sensitive to system specifics, attenuating the robustness. Data-driven methods have claimed accurate performances which scale well to different cases, but the algorithmic structures and enclosed operations are “black,” jeopardizing its robustness. To address these issues, exemplifying the FD problem of aircraft air data sensors, we explore to develop a robust (accurate, scalable, explainable, and interpretable) FD scheme using a typical data-driven method, i.e., deep neural networks (DNN). To guarantee the scalability, aircraft inertial reference unit measurements are adopted as equivalent inputs to the DNN, and a database associated with 6 different aircraft/flight conditions is constructed. Convolutional neural networks (CNN) and long-short time memory (LSTM) blocks are used in the DNN scheme for accurate FD performances. To enhance robustness of the DNN, we also develop two new concepts: “large structure” which corresponds to the parameters that can be objectively optimized (e.g., CNN kernel size) via certain metrics (e.g., accuracy) and “small structure” that conveys subjective understanding of humans (e.g., class activation mapping in CNN) within a certain context (e.g., object detection). We illustrate the optimization process we adopted in devising the DNN large structure, which yields accurate (90%) and scalable (24 diverse cases) performances. We also interpret the DNN small structure via class activation mapping, which yields promising results and solidifies the robustness of DNN. Lessons and experiences we learned are also summarized in the paper, which we believe is instructive for addressing the FD problems in other similar fields.

Funder

Shanghai Sailing Program

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference70 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3