Affiliation:
1. Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, China
Abstract
Objective. Vitamin D is associated with neurological deficits in patients with cerebral infarction. This study uses machine learning to evaluate the prediction model’s efficacy of the correlation between vitamin D and neurological deficit in patients with cerebral infarction. Methods. A total of 200 patients with cerebral infarction admitted to the Department of Neurology of our hospital from July 2018 to June 2019 were selected. The patients were randomly divided into a training set (
) and a test set (
) in a 7 : 3 ratio. The prediction model is constructed from the training set’s data, and the model’s prediction effect was evaluated by test set data. The area under the receiver operator characteristic curve was used to assess the prediction efficiency of models. Results. In the training set, the area under the curve (AUC) of the logistic regression model and XGBoost algorithm model was 0.727 (95% CI: 0.601~0.854) and 0.818 (95% CI: 0.734~0.934), respectively. While in the test set, the AUC of the logistic regression model and XGBoost algorithm model was 0.761 (95% CI: 0.640~0.882) and 0.786 (95% CI: 0.670~0.902), respectively. Conclusion. The prediction model of the correlation between vitamin D and neurological deficit in patients with cerebral infarction based on machine learning has a good prediction efficiency.
Funder
Hebei Medical Science Research Project Plan
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献