Internal Biomechanical Study of a 70-Year-Old Female Human Lumbar Bi-Segment Finite Element Model and Comparison with a Middle-Aged Male Model

Author:

Wu Hequan12ORCID,Peng Jinping1,Jin Xin2

Affiliation:

1. Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, Education Department of Hunan Province, Changsha University of Science and Technology, Hunan, Changsha 410004, China

2. Bioengineering Center, Wayne State University, Detroit, MI 48 202, USA

Abstract

The main purpose of this article is to study the biomechanics of spine tissue in elderly female. In this study, the L3-L5 lumbar bi-segmental finite element model for elderly female was obtained from the Advanced Human Modeling Laboratory of the Bioengineering Center at Wayne State University. The effects of flexion and extension on bone geometry, distribution of ligament fibers, location of nucleus, and changes in intervertebral disc height were studied by comparing the results obtained before and after the update of older female and middle-aged male models. For the purpose of comparing the calculated range of motion (ROM) with the experimental data, additional calculations for axial rotation and lateral bending were performed. The study found that the parameters of the model affected the deformation of the disc herniation, ligament and intervertebral disc, and the axial force carrying capacity of the model. The three predicted ROMs are usually similar to the experimental results. Only the older female model has a slightly larger ROM. Therefore, older women are more vulnerable to lumbar spine injuries than men.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3