Implementation of Genetic Algorithm Integrated with the Deep Neural Network for Estimating at Completion Simulation

Author:

Kareem Kamoona Karrar Raoof12ORCID,Budayan Cenk2

Affiliation:

1. Ministry of Electricity, State Company of Electricity Production Al‐Furat Middle Region, Al Najaf Power Plant, Najaf, Iraq

2. Department of Civil Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey

Abstract

In construction project management, there are several factors influencing the final project cost. Among various approaches, estimate at completion (EAC) is an essential approach utilized for final project estimation. The main merit of EAC is including the probability of the project performance and risk. In addition, EAC is extremely helpful for project managers to define and determine the critical throughout the project progress and determine the appropriate solutions to these problems. In this research, a relatively new intelligent model called deep neural network (DNN) is proposed to calculate the EAC. The proposed DNN model is authenticated against one of the predominated intelligent models conducted on the EAC prediction, namely, support vector regression model (SVR). In order to demonstrate the capability of the model in the engineering applications, historical project information obtained from fifteen projects in Iraq region is inspected in this research. The second phase of this research is about the integration of two input algorithms hybridized with the proposed and the comparable predictive intelligent models. These input optimization algorithms are genetic algorithm (GA) and brute force algorithm (BF). The aim of integrating these input optimization algorithms is to approximate the input attributes and investigate the highly influenced factors on the calculation of EAC. Overall, the enthusiasm of this study is to provide a robust intelligent model that estimates the project cost accurately over the traditional methods. Also, the second aim is to introduce a reliable methodology that can provide efficient and effective project cost control. The proposed GA-DNN is demonstrated as a reliable and robust intelligence model for EAC calculation.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3