Bidirectional Multi-Input and Multi-Output Energy Equalization Circuit for the Li-Ion Battery String Based on the Game Theory

Author:

Wang Jiayu1,Dai Shuailong12ORCID,Chen Xi1ORCID,Zhang Xiang12,Shan Zhifei12

Affiliation:

1. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, China

2. Hubei Province Collaborative Innovation Center for New Energy Microgrid, CTGU, China

Abstract

Energy inconsistency among Li-ion battery cells widely exists in energy storage systems, which contributes to the continuous deterioration of the system durability and overall performance. Researchers have proposed various kinds of battery energy equalizers to reduce such inconsistency. Among them, the inductor equalizer is a predominant type in fast equalization applications. However, it requires relatively more complex control than other types of equalizers. In order to reduce the control complexity of inductor equalizers, a bidirectional multi-input and multi-output energy equalization circuit based on the game theory is proposed in the present work. The proposed equalizer has the modularized circuit topology and the mutually independent working principle. A static game model is developed and exploited for the mathematical description and control analysis of an energy equalization circuit comprised of these equalizers. The feasible control of each equalizer was obtained by solving a series of linear equations for the Nash Equilibrium of the model among the states of charge of the battery cells. The complexity of equations grows linearly with the cell number. The equivalent simulation model for the four-cell equalization is established in the PISM software, where the operational data and simulation results justify the static game model and verify the control validation, respectively. It is concluded that the proposed inductor equalizer is suitable for large-scale battery strings in energy storage systems, electrical vehicles, and new energy power generation applications.

Funder

National Innovation and Entrepreneurship Training Program for College Students

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3