Theoretical Investigation of Nonlinear Time-Dependent Behavior of Two-Way High-Strength Concrete Walls

Author:

Huang Yue12ORCID,Rao Rui2ORCID,Huang Yonghui2ORCID,Zhong Zilin2

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

2. Guangzhou University-Tamkang University Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou 510006, China

Abstract

High-strength concrete (HSC) walls have been increasingly used in the past decades. However, the time-dependent behavior of HSC wall panels in two-way action was not investigated, and the time effect of creep is not included in the design codes in most countries. For this purpose, the nonlinear long-term behavior of two-way HSC wall is investigated in this paper. A theoretical model is developed using time-stepping analysis considering geometric nonlinearity and creep of concrete. A rheological material model that is based on the generalized Maxwell chain is adopted to model the concrete creep. Von Karman plate theory is used to derive the incremental governing equations. The equations are solved numerically at each time step based on a Fourier series expansion of the deformations and loads and numerical multiple shooting method. It shows that the model can effectively predict the time-dependent behavior of two-way HSC panels, where the out-of-plane deflection and internal bending moments increase with time due to the combined effects of creep and geometric nonlinearity, which may ultimately lead to creep buckling failures. A parametric study shows that the long-term behavior of the panel is very sensitive to the in-plane load level and eccentricity, slenderness ratio, aspect ratio, and edge support conditions.

Funder

Australian Research Council

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3